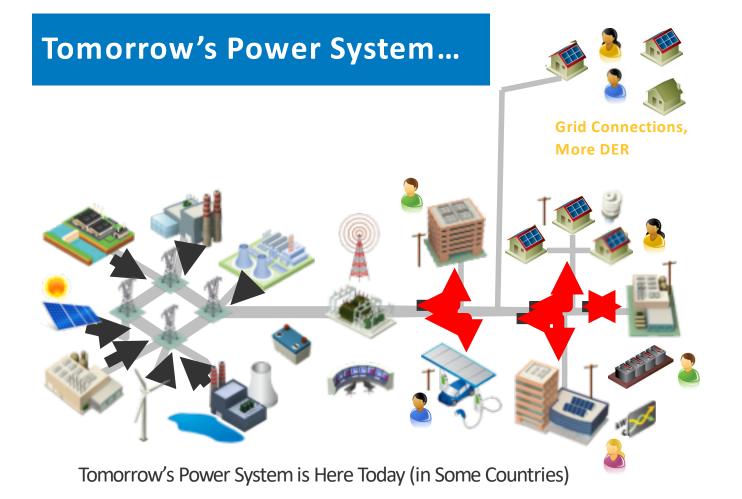
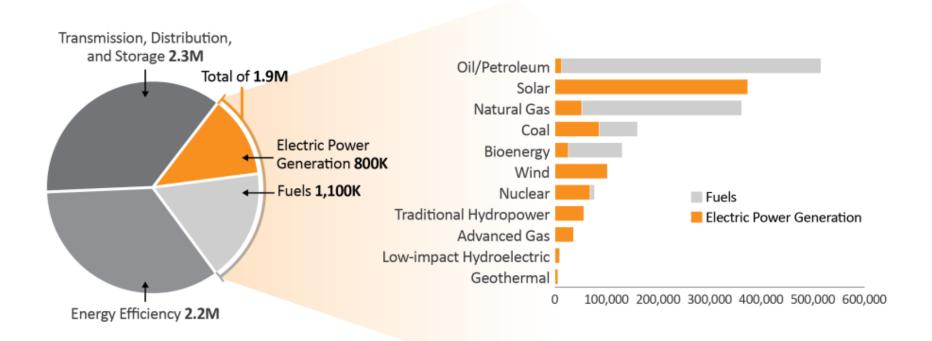

National Renewable Energy Laboratory Partnering with Tribes

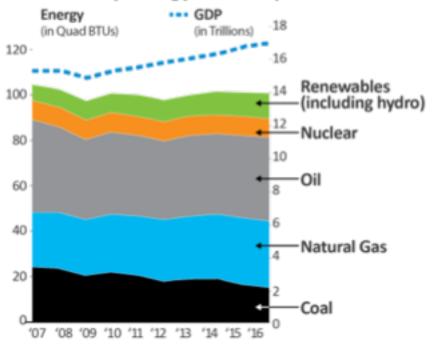

Sherry Stout
Fort Berthold Technology and Innovation
Summit
June 2018

Today's Power System



Solar Employs 43% of the Electric Power Workforce

6.4 million Americans employed in energy sectors

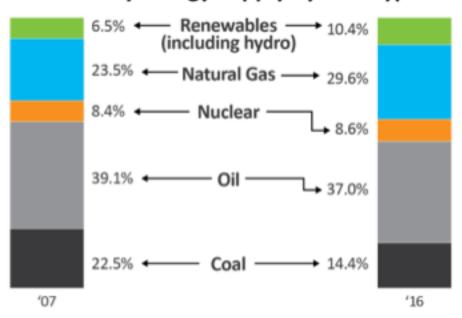


The nation's energy supply is in the

midst of a remarkable transformation

The U.S. Economy is Growing While Energy Use is Shrinking

U.S. Primary Energy Consumption vs. GDP


Gross domestic product (GDP) grew 12% since 2007, while total energy use fell 3.6%

So, the **energy productivity** of the U.S. economy—the ratio of U.S. GDP to energy consumed **grew 16%**

Source: 2017 Sustainable Energy in America Factbook, Bloomberg New Energy Finance and the Business Council for Sustainable Energy, February 2017

U.S. Energy Supply is Shifting

U.S. Primary Energy Supply by Fuel Type

In 2016, the use of natural gas and renewable energy **increased** in the United States:

- Natural gas provided 29.6% of total energy supply
- Renewable energy provided 10.4% of total energy supply

NREL's energy research is making an impact

NREL advances the science and engineering of **energy efficiency**, **sustainable transportation**, and **renewable power technologies** and provides the knowledge to **integrate and optimize energy systems**

NREL Core Capabilities: Foundation for Innovation

System Integration

Systems Engineering and Integration

Large-Scale User Facilities

Innovation and Application

Biological and Bioprocess Engineering

Chemical Engineering

Mechanical Design and Engineering

Power Systems and Electrical Engineering

Foundational Knowledge

Applied Materials Science and Engineering

Biological Systems Science

Chemical and Molecular Science

Advanced Computer Science, Visualization, and Data

Decision Science and Analysis

Renewable Power

Solar

Wind

Water Geothermal

Sustainable Transportation

Bioenergy

Vehicle Technologies

Hydrogen

Energy Efficiency

Buildings

Advanced Manufacturing

Government Energy
Management

Energy Systems Integration

High-Performance Computing

Transmission Planning

Data and

Visualizations NDEI

Partnering with the Lab for Tribal Planning

Path to Cost-Effective, Energy-Saving Solutions

Key Research Areas

- Federal Energy Management tools and expertise to help federal agencies achieve energy efficiency and water goals
- Weatherization and Intergovernmental –
 grant funding and technical assistance for state
 and local governments to manage weatherization
 and energy programs
- EE and RE by State resource maps, energy information, and housing upgrades
- Tribal Energy technical assistance to tribes to identify actionable opportunities for energy development
- Clean Cities promoting the use of domestic fuels in transportation through technologies, resources, and strategies that improve vehicle efficiency
- Resilience Preparedness and Planning technologies, tools, and long-term energy solutions for safe, resilient communities

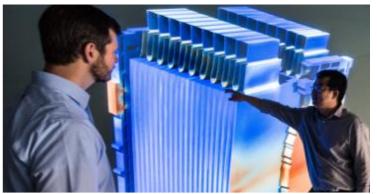
Fort Berthold Transit Plan

Access to Vital
Services

Reduce Emissions and Dust

Reconnecting Communities

Tribal Self-Determination


Road Safety

Transportation Equity

Path to Sustainable Transportation Technologies

Key Research Areas

- Co-optimizing fuels and engines R&D to maximize performance, efficiency, and compatibility with existing infrastructure
- Increasing sustainable mobility connected and autonomous transportation innovations for intelligent, efficient, integrated network
- Reducing expense of battery development –
 Computer-Aided Engineering for Electric-Drive
 Vehicle Batteries (CAEBAT) tool
- Improving efficiency of heavy-duty vehicles –
 commercial truck fuel, engine, thermal management,
 and powertrain innovation
- Demonstrating electrification of vehicles energy storage for plug-in electric and fuel cell electric vehicles; power electronics; and infrastructure R&D to boost performance and market viability

Web-Based Information and Tools

Technical Assistance

Technical and Problem Solving Assistance

- Capture lessons learned and best practices
- Address unforeseen permitting & safety issues
- Identify chronic vehicle or infrastructure field problems
- Incident investigations

Tiger Teams

- Works directly with Clean Cities coalitions and stakeholders
- Tackle challenges that might otherwise stall alternative fuel vehicle projects

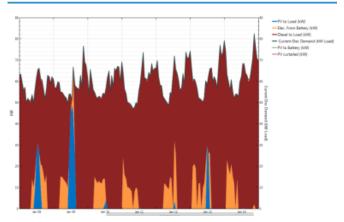
Technical Response Service

- Research and respond to general and technical inquiries
- Address challenging questions
- Educate policymakers and government officials
- Email TechnicalResponse@icf.com or call 800-254-6735 with technical questions
- 48-hour standard response time (indicate if you need it sooner)

Fort Berthold Electricity Plan

Energy Assessment

Improve Service and Reduce Costs


Informed Decisions

Tribal Self-Determination and Sovereignty

Assessing Tribal Energy through Technical Assistance

Dispatch - Nominal battery cost

Power plant

References

- "1 status scada.jpg" screen capture
 - Generator rated capacity only
- Details on makes and models not provided Power plant load data in file "kwethluk trending.csv"
 - Includes load and fuel consumption

Fuel consumption rates

- Use best fit from data
- Fuel [gal./hr.] = 0.0632*Load + 2.0325
- Assume two generators
- 430 kW, , 30% minimum load
- Results in annual fuel use of 118,806 gallons - Within IN

Preser Plant Load (MV)

Kwethluk Power Plant Fuel Consumption Data

Size (KW)

410

Companion #1

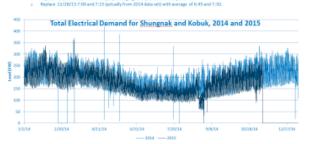
Generator #2 410

Generator 63

- \$0.02/kWh from File"20141000 Electric Intertie Options for Several Rural Alaska Villages, pdf", p. 117
- \$10/start assumption to limit cycling.

Wind Resource

- 34m meteorological tower installed on point extending into Iliamna Lake
 - latitude 59.448°, longitude -157.764°
 - From "Kokhanok, AK Wind Resource Report"
 - NREL generated power production profile for two Vestas V-17


 Apply 15% losses assumption 						
Turbine	Hub Height (m)		Annual Average net Power (kW)	Net Annual Energy (kWh/yr)	Net Capacity Factor	
2) Vestas V-17	26	6.9	48.6	425,858	27%	

On an annual basis available wind energy is 100% of village electricity needs

Electrical Load

- 15-minute load data provided for 2014 and 2015 from AVEC Using 2015 as foundation. Have data from January 1 through November 14, 2015, 15:15.
 - Fill in hours after this point using 2014 data.
 - Apparent loss of intertie with Kobuk (~40 to 50kW drop in load for a period of ~8days, 8/21-8/28/15 Repair by taking the four days prior to the outage and replacing the 5 had days with the four days (2x).
 - Copy 8/17/3015 through 8/20/2015
 - Apparent loss of Intertie with Kobuk In40 to 50kW drop in load for a period on Nov. 60
 - Regiace \$1/5 and \$1/6 with 26hr period from \$1/4. Replace 9/1/15 14:00 100kW drop by averaging hour just before and just after

Recent Technical Assistance Topics

- Energy options analysis
- RE + Storage battery sizing
- Solar array RFP assistance
- Microgrids for resilience and demand response
- Relocation planning
- Cyber-security assessments
- Wind resource mapping

- Housing weatherization program design
- Strategic Energy Planning
- Transmission pre-feasibility studies
- Solar resource assessment
- Power quality trouble shooting
- Rooftop solar program design
- Tribal store refrigeration efficiency assessment

For More Information Contact

Sherry Stout

Sherry.Stout@NREL.gov

Sean Esterly

Sean.Esterly@NREL.gov